Al Update from Al PC to Accelerators

Gretchen Stewart, PE – AI Solution Architect

gretchen.stewart@intel.com

Present – 1-28-25

Lead with Software coupled with Fit for Purpose Al Compute

Code reuse to ensure best fit architecture

- Software Optimizations PyTorch, TensorFlow, Python, & more built on **OneAPI**
- Open Programming Model Open Source

Embracing Open Standards

Intel continues to champion Industry Open Choice

З

Intel[®] AI Software Portfolio

Intel Developer Cloud and Intel Developer Catalog Try the latest Intel tools and hardware, and access optimized AI Models intel. AI ANALYTICS TOOLKIT oneAPI Accelerate End-to-End Data Science and AI **Hugging Face** Intel optimizations and fine-tuning recipes, optimized inference models, and model serving

intei® Geti

Annotation/Training/ Optimization Platform

Note: components at each layer of the stack are optimized for targeted components at other layers based on expected AI usage models, and not every component is utilized by the solutions in the rightmost column

 $^{\rm +}$ This list includes popular open source frameworks that are optimized for Intel hardware

oneAPI

Specification and Open Source

Freedom to Make Your Best Choice

- An open alternative to single-vendor/proprietary lock-in enables easy architecture retargeting
- Open, standards-based programming (C++ with SYCL) so software investments continue to add value in future hardware generations

Performance – Realize All the Hardware Value

- Expose and exploit all the cutting-edge features and maximize performance across CPUs, GPUs, FPGAs, and other accelerators.
- Powerful libraries for acceleration of domain-specific functions

Productivity – Develop Performant Code Quickly

- One programming model for all easy integration with existing code including migration of CUDA code to SYCL
- Based on familiar C++ no need to learn a new language
- Interoperable with existing HPC standards including Fortran, C/C++, OpenMP, and MPI, as well as Python with a rich set of optimized Python libraries

Visit oneapi.io or https://uxlfoundation.org/ for more details

Open industry initiative driving a vendorneutral software ecosystem for multiarchitecture accelerated computing.

NumPy

oneAPI Now governed by the Linux Foundation.

Middleware and Frameworks

() PyTorch 1 TensorFlow

oneAPI Industry Specification

Low-Level Hardware Interface (oneAPI Level Zero)

Intel Gaudi Software Suite

Ecosystem access to hundreds of 1000s of Gen AI models that run on Gaudi to ease development

Intel Gaudi Software Suite

Embedded Software				
ВМС	Margin Tools	Firmware		

Available for download or in the cloud

Run the tools in Intel® Developer Cloud* visit <u>cloud.intel.com</u>

- No hardware acquisition
- No download, install or configuration
- Sample code & documentation
- Ready-to-use deployment & development environments
- Access to cutting edge learning resources.

Professional and Community Support Available

 Download or run tools in the cloud for free Every paid version of Intel[®] oneAPI Base, HPC, and Rendering Toolkit products includes Priority Support Intel[®] Developer Cloud offers Free, Premium (individual), and Enterprise (team) service tiers

Al Powering Use Cases

Generative AI and Large Language Models

OpenVINO[®]

Intel Confidential

Flexible Applications' Development

Performance Optimization

Let your software automatically select the most suitable hardware accelerators, or define a list, allowing applications to achieve better performance

Load Balance Inference

Ensure that available hardware resources are utilized effecting, preventing bottlenecks and maximizing throughput

Flexible Software with Auto Plugin

With hardware technology advancing, auto can adapt to these technologies without rewriting application software

AI PC Developer Tutorials

Kickstart your AIPC applications with GenAI and LLM <u>Jupyter Notebooks</u>

<u>Large Language</u> <u>Model (LLM)</u> <u>Chatbot</u>	 Craft chatbots powered by an LLM using the OpenVINO toolkit. 	<u>Stable</u> Diffusion* v2	 Venture into text-to-image generation and infinite zoom capabilities with Stable Diffusion* v2 and the OpenVINO toolkit.
LLM Instruction Following	 Run an instruction-following text-generation pipeline. 	Bootstrapping Language- Image Pretraining (BLIP)	 Use BLIP for visual language processing tasks like visual question answering and image captioning.
<u>Latent</u> <u>Consistency</u> <u>Models (LCM)</u>	 Learn about image generation using the LCM and the OpenVINO toolkit. 	<u>MusicGen</u>	 Discover a single-stage, autoregressive transformer model that produces high- quality music samples based on text descriptions or audio prompts.
<u>Distil-Whisper</u> <u>Model</u>	 Experience automatic speech recognition with this model and the OpenVINO toolkit. 	<u>YOLOv8*</u> Optimization	 Learn how to convert and optimize YOLOv8* models.

OpenVINO[®]

Gen Al Use Cases and Models Supported

Video Generation -• 3D Modeling • Image Generator • Image Segmentation

Würstchen

DeepFloyd IF

DeciDiffusion

Stable Diffusion

Chat Bot Code Generation

Search • Text Classification •

Content Creation

Instruction Following

Visual

- CLIP
- BLIP
- FII M
- Pix2Pix
- Riffusion
- ControlNet
- Zero Scope
- **QR** code monster
- Segment Anything Model (SAM)
- Latent Consistency Models (LCM)

Language

- GPTJ
- Notus LLaVa

Dolly Youri

MPT

- Owen Llama 2 & 3
- Mistral BLOOM Zephyr
- chatGLM .
- RedPajama chatGLM3
- LLM chatbot Baichuan 2
- Neural Chat
- StableLM-Epoch-3B
- StableLM-tuned-alpha-3b

Example model support includes, but not limited to:

Music Generation

Text to Audio - Audio to Text -Single Voice Conversion

Audio

- BARK
- VITS
- SoftVC
- Whisper
- MusicGen
- AudioLDM
- Distil-Whisper

Introducing the OpenVINO Generative AI Github* Repository

OpenVINO

11

Intel vPro® Platform with Intel® Core™ Ultra

Delivers productivity, security, manageability and stability

Up to 36% lower processor power gen-over-gen

Up to 12x Workstation performance gen-over-gen with Intel® Arc™ Pro drivers

Single use of Intel vPro® to support a PC remotely can save carbon emissions equal to 2 years of use of that PC Intel[®] Core[™] Ultra ushers in the AI PC era for commercial customers, **enabling IT to transition with confidence**

Up to 47% better productivity vs 3-year-old PC

Unmatched ISV ecosystem partnership – 100+ ISVs delivering new experiences, Windows 11 Pro & Copilot

Intel vPro[®] can provide **213% ROI over a 3-year period**

Up to 2.2x

Al performance

gen-over-gen

Up to 70% of attack surface reduction

See www.intel.com/PerformanceIndex for workloads and configurations. Results may vary.

intel xeon®

5th Gen Intel Xeon Scalable Processor

• 2222222

Bringing Al Everywhere

5th Gen Intel[®] Xeon[®] Scalable Processors Intel Acceleration products

Intel[®] Xeon[®] - The Processor Designed for AI

Run any Al code, Build and deploy every workload **Al everywhere** intel. Xeon Intel Al software suite of 5th Gen Intel[®] Xeon[®] Extensive Intel AI products Scalable Processor optimized open-source and partnership frameworks and tools The flexibility of Xeon with the built-in Accelerate end customer time to DL performance of an Al accelerator market Enables out of the box AI performance and E2E productivity Up to 29% higher training and up to 5x improvement on GPT-J in 10 weeks 42% higher inference performance through software optimizations alone³ than our previous generation¹

- Up to 2.69x higher performance than AMD EPYC 9654 (96C) and 9754 (128C) processors²
- Optimizing larger models up to 70B parameters to meet customer SLAs

1. Based on performance gains of 1.1x to 1.29x for training (ResNet50v1.5, BERT-Large, SSD-ResNet34, RNN-T, MaskRCNN, and DLRM) and 1.19x to 1.42x for inference (ResNet50v1.5, BERT-Large, SSD-ResNet34, RNN-T, MaskRCNN, and DLRM) and 1.19x to 1.42x for inference (ResNet50v1.5, BERT-Large, SSD-ResNet34, RNN-T, MaskRCNN, and DLRM) and 1.19x to 1.42x for inference (ResNet50v1.5, BERT-Large, SSD-ResNet34, RNN-T, MaskRCNN, and DLRM) and 1.19x to 1.42x for inference (ResNet50v1.5, BERT-Large, SSD-ResNet34, RNN-T, MaskRCNN, and DLRM) and 1.19x to 1.42x for inference (ResNet50v1.5, BERT-Large, SSD-ResNet34, RNN-T, MaskRCNN, and DLRM) and 1.19x to 1.42x for inference (ResNet50v1.5, BERT-Large, SSD-ResNet34, RNN-T, MaskRCNN, and DLRM) and 1.19x to 1.42x for inference (ResNet50v1.5, BERT-Large, SSD-ResNet34, RNN-T, MaskRCNN, and DLRM) and 1.19x to 1.42x for inference (ResNet50v1.5, BERT-Large, SSD-ResNet34, RNN-T, MaskRCNN, and DLRM) and 1.19x to 1.42x for inference (ResNet50v1.5, BERT-Large, SSD-ResNet34, RNN-T, MaskRCNN, and DLRM) and 1.19x to 1.42x for inference (ResNet50v1.5, BERT-Large, SSD-ResNet34, RNN-T, MaskRCNN, and DLRM) and 1.19x to 1.42x for inference (ResNet50v1.5, BERT-Large, SSD-ResNet34, RNN-T, MaskRCNN, and DLRM) and 1.19x to 1.42x for inference (ResNet50v1.5, BERT-Large, SSD-ResNet34, RNN-T, MaskRCNN, and DLRM) and 1.19x to 1.42x for inference (ResNet50v1.5, BERT-Large, SSD-ResNet34, RNN-T, MaskRCNN, and DLRM) and 1.19x to 1.42x for inference (ResNet50v1.5, BERT-Large, SSD-ResNet34, RNN-T, MaskRCNN, and DLRM) and 1.19x to 1.42x for inference (ResNet50v1.5, BERT-Large, SSD-ResNet34, RNN-T, MaskRCNN, and DLRM) and 1.19x to 1.42x for inference (ResNet34, RNN-T, MaskRCNN, ARGE, RASNET, RASNE Large, SSD-ResNet34, RNN-T (BF16 only), Resnext101 32x16d, MaskRCNN (BF16 only), DistilBERT) compared to 4th Gen Intel® Xeon® processor. See A15-A16 at intel.com/processorclaims:

2. Based on performance gains of 1.19x to 2.69x with Intel® Advanced Matrix Extensions (Intel® AMX) for inference on GPT-J, LLaMA-2 13B, DLRM, DistilBERT, BERT-Large, and ResNet50v1.5

compared to AMD EYPC 9654 and 9754. See A201, A202, A208-A211 at intel.com/processorclaims: 5th Gen Intel Xeon Scalable processors. Results may vary.

Optimized 300+ DL models and 50+ ML and Graph Models

Numenta with Gallium Gaming:

5x Faster than GPUs with Numenta Platform for Intelligent Computing (NuPIC) on Xeon³

Implement pre-built solutions

3. See backup for workloads and configurations. Results may vary.

5th Gen Intel Xeon Scalable processors. Results may vary.

intel 14

Fine Tune in minutes to hours on 5th Gen Intel® Xeon® Scalable processors

Fine tuning time-to-train speedup Intel® Xeon® Platinum 8592+ processor vs. prior generation (BF16, IPEX)¹

Higher is better

5th Gen Xeon can outperform Nvidia A100 for vision transfer learning (Colorectal dataset)²

Lower is better

Fine tune

25 seconds faster

than Nvidia A100

See [A9, A10] at intel.com/processorclaims: 5th Gen Intel Xeon Scalable processors. Results may vary.

See backup for workloads and configurations. Results may vary. 2

intel

Intel[®] Advanced Matrix Extensions (Intel[®] AMX) Acceleration Engine

What is Intel[®] AMX?

- Intel[®] AMX is a built-in accelerator that improves the performance of deep learning training and inference on 4th Gen Intel[®] Xeon[®] processors
- Advanced matrix multipliers are integrated into EVERY core

Business Value

 Help to lower customers' TCO as it raises the bar for where they can meet AI SLAs without the need for a discrete accelerator

Software Support

- Works out-of-box on industry-standard frameworks, toolkits and libraries such as PyTorch, TensorFlow, and OpenVINO
- vSphere 8 supports Intel AMX

PyTorch Training and Inference

10x

PyTorch for both real-time inference and training performance with built-in Intel AMX (BF16) on 4th Gen Intel® Xeon® Scalable processors vs. the prior generation (FP32)

One Processor for Scalar, Vector, and Matrix

Intel® Data Center GPU Flex Series 140

	Intel [®] Data Center GPU Flex Series 140		
Card Design	6GB GDDR6 GCBR6 Intel® Data Center GPU Flex Series 140 GPU Intel® Data Center GPU Flex Series 140 GPU x8 Gen4 PCle PCle Switch x8 Gen4 PCle(electrical) x16 Gen4 PCle(mechanical)		
Card TDP	Board Power: 75W		
Card Specifications	Half height, half length, single-wide, Passive cooling		
GPU	Intel [®] Data Center GPU Flex Series 140		
GPU's Per Card	2		
Memory w/ECC	Capacity:12GB (6GB/GPU)Mem xfer Rate:1750GT/sMem Bus Width:96 bits/GPU		
Fixed Function Media Units (Per Card)	4 (2 per GPU): 28 transcode streams H.265 1080p60 1:1		
Supported Usecases	Media transcode, Visual Inference/Media Analytics, VDI		
GPU Throughput (Peak)	•FP32: 8.0 TFLOPs •FP16: 52 TFLOPs •INT8: 105 TOPs •INT4: 210 TOPs		
Product Availability	3 years *		
Operating System	Linux: Ubuntu, RHEL Windows: WinServer 2019 & 2022, WinClient		
Host CPU Support	Whitley-Ice Lake (ICX) & Eagle Stream- Sapphire Rapids (SPR)		
Branding/Channel Partners	Intel Branded Card		

Designed for high-density use cases Smaller card, low profile, and lower power

- VDI uses SRIOV with no SW licensing fee leading to lower TCO
- Media Delivery Deliver highest Media density/performance and TCO leadership within the Flex Series GPUs
- Visual Inference/Media Analytics good solutions where primarily work is media processing/transcode and light/occasional inference

Intel® Data Center GPU Flex Series 170

Card Design	Intel® Data Center GPU Flex Series 170	
Card TDP	Board Power: 150W	
Card Specifications GPU	Full Height, ¾ length, single-wide, Passive cooling Intel® Data Center GPU Flex Series 170 GPU	
GPU's Per Card	1	
Memory w/ECC	Capacity:16GBMem xfer Rate:2250GT/sMem Bus Width:256 bits	
Fixed Function Media Units (Per Card)	2 (2 per GPU): 14 transcode streams H.265 1080p60 1:1	
Supported Usecases	Media transcode, Visual Inference/Media Analytics, VDI	
GPU Throughput (Peak)	 FP32: 16.8 TFLOPs FP16: 128 TFLOPs INT8: 256 TOPs INT4: 512 TOPs 	
Product Availability	3 years *	
Operating System	Linux: Ubuntu RHEL Windows: WinServer 2019 & 2022, WinClient	
Host CPU Support	Whitley-Ice Lake (ICX) & Eagle Stream- Sapphire Rapids (SPR)	
Branding/Channel Partners	Intel Branded Card	

For high performance use cases Delivers highest workload performance within the Flex Series GPUs

- VDI uses SRIOV with no SW licensing fee leading to lower TCO
- Visual Inference/Media Analytics and balances dedicated media and matrix compute assets for good visual inference performance
- Inference run real time and batch plus acceleration for running medium sized LLMs (upto ~16B like Llama 2)

Architected for Gen Al Performance & Productivity – Gaudi3

Designed for Al diving greater efficiency & performance	64 Tensor Processor Cores (5th gen)	8 Matrix Math Engines
Increased memory for LLM efficiency and cost effectiveness	128GB HBM capacity, 3.7 TB/s B/W	96MB SRAM, 12.8 TB/s SRAM B/W
Massive, flexible on-chip networking Open standard vs. proprietary InfiniBand	24x 200 GbE industry- standard RoCE Ethernet ports	PCIe 5 ×16

* NV H100 comparison based on : https://nvidia.github.io/TensorRT-LLM/performance/perf-overview.html, May 28th 2024 → "Large Language Model" tab Vs Intel Gaudi 3 projections for LLAMA2-7B, LLAMA2-13B & GPT3-175B as of 3/28/2024. Gaudi 3 performance was projected using static batch assumptions. Results may vary.

intel Gaudi 2x faster inferencing

Average projection for Intel Gaudi 3 accelerator vs. Nvidia H100, running common Large Language Models*

Source for Nvidia performance: <u>Overview — tensorrt_IIm documentation (nvidia.github.io)</u>, June 2024. Reported numbers are per GPU. Intel Gaudi 3 projections by Habana Labs, using static batch assumptions, April 2024. Results may vary.

Enterprise Customer Proof Point: Boston Consulting Group BCG deployed semantic knowledge discovery solution using our GenAl platform, with data privacy at the core

Delivered a new search paradigm with meaningful impact

Chat-based, semantic querying

Page-level results w/ insight summary

141% in user satisfaction

125% in search result relevance

Viral users' interest and engagement – scaling solution is a non-issue

Vibrant discussion and excitement

Ability to deliver speed, scale, and privacy

during live demo

"BOOM!!!! I found one of the hardest things to find on KD, I never found it despite searching multiple times [with the old tool]" - Managing Director & Senior Partner

"This is life changing. Search will never be the same again. My clients are going to be blown away!"

- Managing Director & Senior Partner

O Number of times Intel saw customer's raw data due to encrypted tokenization

Weeks to train model and prepare for enterprise employee use

TB of text and image confidential data to train LLM

12 ^w

Weeks in total to provide solution to enterprise employees

Learn more about our collaboration with BCG here-<u>https://www.prnewswire.com/news-releases/intel-and-bcg-announce-collaboration-to-deliver-enterprise-grade-secure-generative-ai-301821547.html</u>

Delivering Customer Value

NETFLIX

Improved performance¹

Using Xeon and its built-in Al accelerator engines, Netflix deployed a convolutional neural network for intelligent content downscaling.

> "Performance improvements mean huge savings in cloud infrastructure cost. "

> > Amer Ather Cloud and Studio Performance Engineer

👫 Numenta

5x

Faster than GPUs with Numenta Platform for Intelligent Computing (NuPIC) on Xeon²

NuPIC with Intel Xeon enables Gallium Studios to run Al models with incredible performance on CPUs in their new breakthrough game, Proxi.

> "Proxi uses LLMs to deliver AI simulated agents generated from players' uploaded memories. Since partnering with Numenta, we have been able to increase speed and accuracy and lower costs"

> > Lauren Elliott CEO, Gallium Studios

Intel® Al Portfolio

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of others.

